1 부터 $N$ 까지의 수 $N$개가 포함된 순열이 주어졌을 때 문제에서 정의한 그래프를 그릴 수 있다. 그 그래프에서 포함된 회로(cycle)의 개수를 세는 문제다. 순열로 표현한 그래프의 특징상 회로의 개수는 곧 연결 요소의 개수가 된다. 따라서 DFS, BFS 등 여러 가지 방법으로 Flood-Fill 을 하여 연결 요소의 개수를 구하면 된다. #include int T, N; int A[1001]; bool V[1001]; void dfs(int n) { if (V[n]) return; V[n] = 1; dfs(A[n]); } int main() { int i; for (scanf("%d", &T);T--;){ scanf("%d", &N); for (i=1;i
빨강, 파랑, 초록색, 세 가지 색상의 공들이 2차원 평면에 배치 되어 있다. 빨간색 공을 세는 직사각형, 파란색 공을 세는 직사각형, 초록색 공을 세는 직사각형 세 개를 크기 제한 없이 겹치지 않게 잡았을 때 세어지는 공의 개수를 최대화 하는 문제다. 여기서 직사각형 변 위에 있는 공도 세어주고, 겹쳐서는 안된다. 우선 직사각형의 크기 제한이 없다는 점을 생각하자. 그러면 가능한 직사각형의 배치를 아래와 같이 크게 두 가지로 나눌 수 있다. 이 두 가지 경우에 대한 코딩을 하고 y축 대칭, 직선 y=x에 대한 선대칭 및 $3! = 6$가지의 색상 재배열등을 행해 모든 경우를 고려할 수 있다. 우선 각 점들을 x 좌표 기준으로 정렬을 한 뒤 빨간색 영역이 차지하는 범위를 정한 뒤 segment tree ..
정점의 개수가 $N$개고 간선의 개수가 $M$개인 그래프가 주어진다. 각 정점의 차수가 $K$ 이상인 부분그래프 중 가장 큰 부분그래프의 크기를 구하는 문제다. 입력으로 주어진 그래프에서 차수가 $K$ 보다 작은 정점들은 답이 되는 부분그래프에 들어갈 수 없으므로 제거한다. 그런 정점들을 제거하면 새로운 그래프가 나오는데, 마찬가지로 새로운 그래프에서도 차수가 $K$ 보다 작은 정점들은 답이 되는 부분그래프에 들어갈 수 없다. 위와 같은 방법으로 더 이상 제거할 정점이 없을 때까지 정점들을 제거한다. 그 후 남은 그래프가 문제에서 요구하는 최대 크기의 부분그래프가 된다. 총 시간복잡도는 $O(M)$이 된다. #include #include using namespace std; #define MAXN 20..
- Total
- Today
- Yesterday
- Divide & Conquer
- Tree
- moore
- Splay Tree
- IOI2013
- majority
- z-trening
- Algorithm
- idea
- optimization
- BOI 2001
- Dijkstra
- vote
- USACO
- Knuth Optimization
- ioi
- BOI
- TRIE
- IOI2011
- IOI2014
- Boyer
- IOI2012
- Boyer-Moore Majority Vote Algorithm
- HackerRank
- Parametric Search
- Segment tree
- BOI 2009
- Dynamic Pramming
- dynamic programming
- Greedy Method
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |