본문 바로가기 메뉴 바로가기

PS 이야기

프로필사진
  • 글쓰기
  • 관리
  • 태그
  • 방명록
  • RSS

PS 이야기

검색하기 폼
  • 분류 전체보기 (141)
    • 문제 (1)
    • 해법 (18)
    • IOI (42)
      • IOI2011 (6)
      • IOI2012 (5)
      • IOI2013 (7)
      • IOI2014 (8)
      • IOI2015 (3)
      • IOI2016 (2)
      • IOI2017 (3)
      • IOI2018 (2)
      • IOI2019 (0)
      • IOI2020 (6)
    • ICPC (52)
      • 2012 대전 (3)
      • 2013 인터넷예선 (11)
      • 2014 전대프연 (1)
      • 2014 인터넷예선 (10)
      • 2014 대전 (11)
      • 2015 이후 한국대회 (6)
      • 해외리저널 (6)
      • World Finals (4)
    • Codejam (2)
      • Korea 2012 (1)
    • 우분투&서버 (0)
    • 공부 (24)
    • 잡담 (2)
  • 방명록

2022/10 (1)
Nexon Youth Programming Challenge(NYPC) 2022 본선 풀이

1214 A. 조약돌 순서 처음에 $[1, 2, 3, ..., K]$이 적혀있는 크기 $K$인 배열 $A$가 있다. $i = 1$부터 시작하여 $A_i$와 $A_{i+1}$의 값을 바꾼다. 그리고 $i$를 $1$ 증가시킨다. 만약 $i = K-1$이라면 다음 $i$의 값은 $K$가 아니라, $1$이 된다. 바꾸는 작업을 $N$ 번 하였을 때, 최종 배열의 상태를 구하는 문제다. 값을 바꾸는 횟수 $N$이 최대 $10^{18}$로 굉장히 크다. 바꾸는 작업을 $K \times (K-1)$ 번 하면 배열이 원래 상태로 돌아오고, 바꾸는 작업을 $K-1$ 번하면 맨 왼쪽에 있던 값이 맨 오른쪽으로 가는 것을 알 수 있다. 이 점을 이용하여, $O(K)$ 시간복잡도에 해결할 수 있다. 더보기 #include u..

해법 2022. 10. 31. 00:05
이전 1 다음
이전 다음
공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
링크
TAG
  • Boyer
  • majority
  • IOI2012
  • BOI 2009
  • USACO
  • ioi
  • idea
  • Parametric Search
  • Dijkstra
  • dynamic programming
  • BOI
  • optimization
  • IOI2011
  • z-trening
  • Algorithm
  • Greedy Method
  • moore
  • IOI2014
  • Tree
  • BOI 2001
  • IOI2013
  • Splay Tree
  • vote
  • Dynamic Pramming
  • Boyer-Moore Majority Vote Algorithm
  • TRIE
  • Knuth Optimization
  • Divide & Conquer
  • Segment tree
  • HackerRank
more
«   2022/10   »
일 월 화 수 목 금 토
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31
글 보관함

Blog is powered by Tistory / Designed by Tistory

티스토리툴바