본문 바로가기 메뉴 바로가기

PS 이야기

프로필사진
  • 글쓰기
  • 관리
  • 태그
  • 방명록
  • RSS

PS 이야기

검색하기 폼
  • 분류 전체보기 (141)
    • 문제 (1)
    • 해법 (18)
    • IOI (42)
      • IOI2011 (6)
      • IOI2012 (5)
      • IOI2013 (7)
      • IOI2014 (8)
      • IOI2015 (3)
      • IOI2016 (2)
      • IOI2017 (3)
      • IOI2018 (2)
      • IOI2019 (0)
      • IOI2020 (6)
    • ICPC (52)
      • 2012 대전 (3)
      • 2013 인터넷예선 (11)
      • 2014 전대프연 (1)
      • 2014 인터넷예선 (10)
      • 2014 대전 (11)
      • 2015 이후 한국대회 (6)
      • 해외리저널 (6)
      • World Finals (4)
    • Codejam (2)
      • Korea 2012 (1)
    • 우분투&서버 (0)
    • 공부 (24)
    • 잡담 (2)
  • 방명록

2022/11/29 (1)
다항식 나눗셈의 몫을 빠르게 구하는 방법

차수가 $n$인 다항식 $f(x) = c_0 + c_1x^1 + c_2x^2 + \cdots + c_nx^n (c_n \ne 0)$가 있다. 그리고 차수 $m$인 다항식 $g(x) = d_0 + d_1x^1 + d_2x^2 + \cdots + d_mx^m (d_m \ne 0)$이 있다. 이를 다항식 $q$와 $r$을 이용하여, $f(x) = g(x)q(x) + r(x)$라고 나타내 보자. $r(x)$의 차수가 $m$보다 작은 경우, $f$를 $g$로 나눈 몫을 $q$, 나머지를 $r$이라고 정의한다. 다항식 $q$의 차수는 $n-m$이다. 다항식의 나눗셈을 교과과정에서 배운대로 구현한다면 $O(nm)$ 시간복잡도가 된다. 이를 좀 더 빠르게 하는 방법에 대해서 알아보자. $\textrm{Rev}(f)$를..

공부 2022. 11. 29. 23:09
이전 1 다음
이전 다음
공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
링크
TAG
  • Tree
  • optimization
  • dynamic programming
  • moore
  • BOI 2001
  • USACO
  • idea
  • Boyer-Moore Majority Vote Algorithm
  • Knuth Optimization
  • vote
  • Greedy Method
  • Splay Tree
  • BOI 2009
  • ioi
  • IOI2011
  • Dijkstra
  • Boyer
  • IOI2013
  • Segment tree
  • Dynamic Pramming
  • TRIE
  • Parametric Search
  • BOI
  • majority
  • Algorithm
  • Divide & Conquer
  • z-trening
  • IOI2014
  • HackerRank
  • IOI2012
more
«   2022/11   »
일 월 화 수 목 금 토
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30
글 보관함

Blog is powered by Tistory / Designed by Tistory

티스토리툴바