
Convex Hull Optimizaiton 중에 추가되는 직선의 기울기에 경향성이 없다면, 직선들을 스택으로 관리하지 못하고, set으로 관리하여 lower_bound 같은 연산을 잘 활용해주어 해결해야 한다. 그런데 이렇게 코딩하는 것은 여간 쉬운 일이 아니다. 실제로 Convex Hull Optimization을 사용하는 DP 문제는 아니지만, 이런 상황을 잘 표현해주는 예시 문제(반평면 땅따먹기)로 설명을 이어가겠다. 직선들을 set으로 관리하는 방법으로 위 문제를 해결하면 코드는 다음과 같이 되며, 꽤나 복잡하다. 더보기 #include using namespace std; #define MAXN 100005 typedef __int64_t lld; typedef __int128_t lll; i..
문제 및 채점: oj.uz 번호가 0부터 $N-1$까지 매겨진 버섯 $N$ 개가 있다. 버섯은 두 종류로 구분할 수 있는데 눈으로 구분하기 힘들다. 기계를 사용하여 임의의 버섯들을 선택하여 순서를 정해 일렬로 기계에 넣을 수 있다. 기계에 넣으면 인접한 버섯 중에 종류가 다른 경우가 몇 개인지 확인하여 알려준다. 기계를 잘 사용하여 버섯 0과 같은 종류의 버섯 수가 몇 개인지 구하는 문제다. 10점 풀이 1 이상 $N-1$ 이하인 $i$에 대해 기계에 $[0, i]$ 순서로 버섯을 넣어 버섯 $i$가 버섯 0과 같은 종류인지 확인할 수 있다. 이때, 기계 사용을 최대 $19999$번 하게 된다. 더보기 #include #include "mushrooms.h" using namespace std; int ..
문제 및 채점: oj.uz $K$ 개 종류의 비스킷이 있고, 각 종류는 번호가 1부터 $K$까지 매겨져 있다. $i$번 종류의 비스킷의 맛 점수는 $2^{i-1}$이며, $i$번 종류의 비스킷은 $a[i]$ 개 있다. 비스킷 일부를 선택하여 비스킷 바구니 $x$ 개에 나눠 담을 건데, 각 비스킷 바구니에 담긴 비스킷 맛 점수의 합을 동일하게 해야 한다. 이렇게 나눌 때 만들 수 있는 바구니에 담긴 비스킷 맛 점수의 합의 수를 구하는 문제다. 다음과 같은 DP 배열을 정의하자. $$D[i] = \text{1번부터 }i\text{번 비스킷까지 사용했을 때 만들 수 있는 합의 수}$$ 초기값은 $D[0] = 1$이 된다. $i$ 번 비스킷까지 사용하여 만들 수 있는 합 중 가장 큰 수를 $b$라고 하자. 그러..
- Total
- Today
- Yesterday
- ioi
- BOI 2001
- Dynamic Pramming
- Splay Tree
- vote
- IOI2012
- Parametric Search
- Greedy Method
- Boyer-Moore Majority Vote Algorithm
- Tree
- Divide & Conquer
- Knuth Optimization
- IOI2011
- Algorithm
- optimization
- Dijkstra
- majority
- dynamic programming
- idea
- z-trening
- BOI
- HackerRank
- BOI 2009
- TRIE
- IOI2014
- moore
- Boyer
- Segment tree
- USACO
- IOI2013
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |