
1. S OR T 스페이스(S)와 탭(T)을 입력한 순서가 주어졌을 때, 총 몇 칸 띄어지게 되었는지 구하는 문제다. 단, 탭 크기는 4다. 문자열을 입력받아서 S가 나오면 칸 수를 1 늘려주고, T가 나오면 칸 수를 현재 칸 수보다 큰 4의 배수로 만들어주면 된다. 더보기 A = input() S = 0 for c in A: S += 1 if c == 'T': while S%4 != 0: S += 1 print(S) 2. 카트라이더 별 모으기 3개의 별이 있고 각 별을 획득할 수 있는 기록 제한이 주어졌을 때, 주어진 기록이 몇 개의 별을 획득할 수 있는지 구하는 문제다. 이 문제에서 시간이 기록은 'aa:bb:cc'꼴로 주어지는데, 이 기록 문자열을 정수로 변환해도 되고, 정수로 변환하지 않고 문자열..

문제 및 채점: 사이트 A. New Elements: Part 1 질량이 X인 원소 C가 있고, 질량이 Y인 원소 J가 있다. 분자 N개가 있는데, i번째 분자에 포함된 원소 C의 개수는 C[i]개고, 포함된 원소 J의 개수는 J[i]개다. 원소 C와 원소 J 이외에 다른 원소는 포함되어 있지 않다. 분자를 질량 순서대로 정렬하려고 한다. 다만, 분자의 질량은 모두 달라야 한다. 이때, 정렬 결과로 가능한 순서는 모두 몇 개인지 구하는 문제다. 서로 다른 i와 j에 대해, C[i] ≤ C[j], J[i] ≤ J[j]를 만족하면 질량 X, Y와 상관없이 질량의 대소 관계가 명확하다. 다만, C[i] < C[j], J[i] > J[j]와 같이 원소 C 개수의 대소 관계와 원소 J 개수의 대소 관계가 뒤집혀있..

참고자료: 위키백과 Stern-Brocot 트리는 모든 양의 유리수가 정점과 일대일이 되는 무한한 완전 이진트리다. 또한, 이진탐색트리처럼 왼쪽에서 오른쪽 방향으로 탐색 가능하다. 연분수에 의한 트리 양의 유리수는 $q$ 는 아래와 같은 연분수 꼴로 표현할 수 있고, 이를 수열 $a$로도 표현할 수 있다. $q = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{\ddots + \cfrac{1}{a_k}}}} = [a_0; a_1, a_2, \dots, a_k]$ 여기서 $k$와 $a_0$는 음이 아닌 정수고, 나머지 $a_i$는 양의 정수다. 이러한 표현은 유일하지 않은데 다음과 같이 수열의 맨 끝 $a_k$가 $1$일 때는 중복이 있기 때문이다. $[a_0; a_..
- Total
- 227,239
- Today
- 100
- Yesterday
- 92
- TRIE
- Knuth Optimization
- Segment tree
- Algorithm
- IOI2012
- BOI 2009
- USACO
- Divide & Conquer
- moore
- IOI2013
- z-trening
- vote
- BOI 2001
- Splay Tree
- idea
- IOI2011
- Greedy Method
- BOI
- HackerRank
- Dynamic Pramming
- majority
- Boyer
- Parametric Search
- Dijkstra
- IOI2014
- optimization
- ioi
- Boyer-Moore Majority Vote Algorithm
- Tree
- dynamic programming